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Minimax Optimization by Algorithms
Employing Modified Lagrangians

OLOV EINARSSON

Abstract—Two general, modified Langrangian algorithms
related to recent developments in nonlinear programming are pre-
sented. The methods give accurate results and are easy to program.
An N-section transmission-line transformer is used as a test
problem for minimax (equal ripple) optimization and the methods
are compared to existing algorithms for network optimization.

I. INTRODUCTION

There exists a large class of optimization problems of engineering
interest where some finite-dimensional functional is minimized (or
maximized) subject to an equal ripple condition. The purpose of
this short paper is to draw attention to the existence of two effec-
tive, recent algorithms which can be applied with advantage to this
type of problem. While not new, the methods do not appear to have
been applied to microwave problems before. The methods proposed
are quite general and the choice of a transmission-line transformer
problem as an example is only dictated by its use as a test problem
in previous works on minimax optimization [1]-[3].

Consider the following minimax problem. Find the vector £ which
minimizes the real-valued function f(z); i.e., find

min f(z) 1
zeRM
where f(z) is defined as
f(@) & max o) [* 2)

vel

and p is the reflection coefficient of the N-section lossless trans-
mission-line transformer shown in Fig. 1. In (2) the frequency »,
normalized to some suitable frequency », is varied either over a
closed interval

1 = Don] (3a)

or over a finite set

I = {V;}ly.

(3b)

The components of the n~-dimensional vector x in (1) are the (real)
characteristic impedances and the lengths of the transmission-line
sections. In one version the lengths of the sections are kept constant
and equal to A\¢/4 where Ao = ¢/r.. The corresponding z vector is
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Fig. 1. 100-percent relative bandwidth 10:1 transmission-line trans-

former.

(ZI,ZZ,"’,ZN), n=N

z

ll=lz= e =ZN=)\0/4:. (43.)

Alternatively, the lengths of the transmission-line sections may also
be varied, resulting in an z vector

r = (Zl,Zz, .. ',ZN,ll,lz, .. ‘,lN), n = 2N. (4b)

The solution of the transmission-line transformer problem is known
in terms of Chebyshev polynomials. The optimal lengths all turn
out to be equal to A¢/4 and the optimal impedances can be deter-
mined from the polynomial expressing the insertion loss function
[4]. However, the methods of this investigation do not rely on this

special polynomial structure of the problem.

II. DISCUSSION OF METHODS

It is readily seen that the unconstrained minimization problem
given by (1), (2), and (3b) is equivalent to the following problem:

min f; (z) (5)

weR™
subject to the M — 1 nonlinear constraints
filz) —filz) £0, ©=28,---,M (6)
where we have defined
@) & 3 lo@w) 2 (N

and where we have used the fact that | p(z,») | takes its maximum
value at the left end point »; of the frequency range.

One well-established way of handling a nonlinear constrained
optimization problem is to introduce a Lagrange multiplier for each
constraint and construct a Lagrangian which will be stationary at
the solution point. However, in the treatment of nonconvex prob-
lems, the usefulness of the Lagrangian is limited by the fact that a
stationary point may not necessarily correspond to a minimum.
Hestenes [5] and Powell [6] independently discovered that this
drawback could be overcome by augmenting the Lagrangian with a
quadratic penalty function term making the problem locally convex
in, a neighborhood of the solution point. A large number of different

.modified Lagrangians (also called “exact penalty functions”’ or

“augmented Lagrangians”) have been proposed both for problems
with equality and inequality constraints (7], [8] The modified
Lagrangians employed in this short paper are given explicitly by
(Al) and (A4) of Appendix A.

In most cases the Lagrange multipliers related to an optimization
problem are unknown and have to be calculated during the mini-
mization procedure. One way of doing this is to employ the saddle-
point property of the modified Lagrangian L (z,x) in the product
space [z,n] where u is the multiplier vector, and solve the dual
problem, i.e., to find

max min L (z,u) ®)
peRM zcRN
by iterating alternately in z and u space. The updating of the
multipliers can be done in different ways. A very simple rule is used
in the Hestenes—Powell method. For the routine VFO1A [9] advan-
tage is taken of the fact that if the unconstrained minimizations are
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performed by a quasi-Newton algorithm, the approximation obtained
to the second derivatives in = space can be utilized to approximate
the corresponding derivatives in u space, giving rapid (almost
quadratic) convergence in both spaces.

ITII. NUMERICAL RESULTS

‘We have performed computations on the problem under considera-
tion using two approaches: 1) an algorithm of the Hestenes—Powell
type; 2) a Fortran routine VFO1A developed by R. Fletcher at The
Atomic Energy Research Establishment, Harwell, England [9], and
available in the Harwell Subroutine Library. This routine employs
a modified Lagrangian proposed by Rockafellar [8]. In both cases
the unconstrained minimizations are performed by the Harwell
subroutine VAO9A which is a quasi-Newton algorithm employing
the Broyden—Shanno-Fletcher formula to update an approximation
to the Hessian, factorized in triangular form [10], [11].

The Hestenes—Powell algorithm requires that the constraints be
given as equalities. If inequality constraints are present, this means
that the “set of active constraints,” i.e., the constraints satisfied
as equalities at the solution point z* has to be determined. For
minimax problems of the type we consider, information about the
active set is usually available in advance and it is feasible to start
with an approximation of the active set and adjust this set, if
necessary, during the optimization procedure. We denote the active

set of frequencies by
I & vyt = 2,3,--, M | fu(a*) — fi(z*) = 0}. 9

Assuming there are M, constraints belonging to I, we can, without
loss of generality, arrange them so that
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I = {pi}oMa*t,

(10)

Of course the formulation (3a) where the frequency is varied over
a continuous interval is an optimization problem in an infinite-
dimensional space and to apply finite-dimensional methods some
approximations have to be made. The most obvious one is simply
to sample the interval at a finite number of points. However, it should
be remembered that the result obtained will be only an approxima-
tion of the continuous problem related to (3a).

Increasing the accuracy of the locations of the maxima by making
the sampling interval smaller has the drawback of rapidly increasing
the number of constraints which are almost active, with computa~
tional difficulties as a result. For that reason, for the five-section
transformer a modification of the Hestenes—Powell algorithm was
used where a simple quadratic interpolation search procedure for
the »; was employed after every second outer iteration (i.e., change
of u).

All computations were performed on a Univac 1108 computer at
the Computation Center of the University of Lund. A brief descrip-
tion of the algorithms can be found in Appendix A and the details
of the cases treated are given in Appendix B.

In Table I the numerical results are collected and compared to
the work by Bandler ef al. [2] and by Charalambous and Bandler
[37. Their approach to the problem differs somewhat from ours. For
example, the endpoint of the frequency range is not sutomatically
included in the active set. For full details the reader is referred to
the original papers. Note that one function evaluation means one
evaluation of the function and its gradient.

‘When evaluating the results of Table I it should be borne in mind
that the larger part of the number of function evaluations often is
attributed to the first unconstrained minimization and consequently

TABLE 1
NumBeR oF Funcrion Evarvations AND Compurer CPU Tive
~Camputer
Problem Starting Point Algorithm Nurber of Function Evaluations CPU~time
(seconds)
Hestenes-Powell 26 +10 + 6 =42 0.71
I a
33 + 9 + 5 =47
=3 1, 3.1623, 10 VFOLA b 1.00
1= AO/4 2.1-2 1.5-3 3.5-6
Bandler et al. [7] 219
1, 3.1623, 10, Hestenes-Powell 40 +17+10+4 =71 1.84
0.8, 1.2, 0.8
63] + 10 + 6 + 5 =84
VF0lA 4,38
1.6-2 1.1-3 1.6-4 1.6-6
1T 9] + 7 + 4 =50
VF 2.
N=3 1.5, 3, 6, 0.8, 1.2, 0.8 01A 393 L-d  7.46 76
variable
Lengths Charalambous and Bandler [9] 105, 95°
70 + 7 + 4 =81
1, 3.1623, 10, 1, 1, 1 VFOLA 3.3 2.8-4 2.4-6 4.14
Charalambous and Bandler [9] 165, 155
4
m Hestenes-Povel1 @l s 19 4 @i+ 172
N=5 1.5, 3.5, 5.5, 7.5, 9.5 -
1 =2,/ 53 + 58 + 22| + 14 = 147
VF0lA 16.56
4.3-3 5.4-4 2.1-4 2.4-5

Note: Starting points are given according to (4a) or (4b) with the lengths normalized to Ao/4.

» Correct active set established.
b Gives values of K with notation 2.1-2 A 2.1-10™2,

¢ Average number of function evaluations for Algorithm 1 and 2, respectively.

d Search for maxima performed.
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is strongly dependent on. the choice of starting point. The termina-
tion criteria chosen yield a relative error of the reflection coefficient
for the three-section transformer ranging between 0.8-107% and 0.5-
108, The essentially quadratic convergence of the methods makes
an increase of this accuracy possible with little extra computational
effort.

IV. CONCLUDING REMARKS

Based on the limited numerical results presented, it seems reason-
able to conclude that minimax optimization can be effectively
achieved through algorithms employing a modified Lagrangian, and
that the efficiency of this approach is at least comparable to that of
available algorithms specifically designed for minimax optimization.

The results obtained indicate that is is better to use a search
procedure to locate the maxima and treat them as equality con-
strainfs than to create a large number of inequality constraints by
a fine subdivision of the frequency interval.

The methods presented are quite general and can be applied to
most optimization problems where equal ripples in some design
quantity are desired. The modified Lagrangians employed are well-
behaved functions resulting in rapid econvergence of the minimiza-
tions required and making an increase of the desired accuracy of
little cost in computational effort. They are insensitive to the values
of the algorithmic parameters as long as the penalty factors are
chosen large enough to ensure local convexity around the solution
point. Furthermore, the Hestenes—Powell method is especially easy
to program by incorporating any available unconstrained minimiza~
tion routine into the program.

APPENDIX A

DESCRIPTION OF ALGORITHMS

Define the modified Lagrangian

Mo+l Mgt
L@m@) &fi + 2 wilfi —fi) + 2 Q(fi —f)* (A1)
=2 i=2

where u,@ € RMa are the multiplier vector and the weight factor
vector for the penalty function terms. With this notation the
Hestenes—Powell-type algorithm used is as follows.
Initially setz = 2% u = 0, @ = Q% ep = ep®, then do the following.
1) Find min, L (z,u,Q). Assume z = z* is this minimum with the
final step towards the minimum

| 2:* — 2| < ep, (A2)

2) Set u* = pi + 2Q[ fi(z*) — fi(e*) ], 7 = 2,3,+++,M, + 1 and
ep* = 0.05¢p.

3) Finish if |fi(z*) —fite®) | <epl, 7 =23,--- M, +1. If
fi@@*) — filz*) Z 1(fi(x) — (@) set @ =10Q; ¢ =23,---,
M, + 1. .

4) Setx =% u = pu*, @ = Q% ep = ep™, go to 1).

The Harwell subroutine VF01A [20] solves the problem

t=1,o0em.

min {F(z) [e:(z) 20, 4=12,0¢M} (A3)
zeRM
employing the modified Lagrangian
M
Li(z,0,0) AF(2) + 3 2_ oif[(es(z) — 6)-F — 62}  (Ad)
=1
where 0, ¢ € R¥, and the notation
a ifa <0
a_ = { (A5)
0 ifa >0

is used. One outer iteration (in @ space) consists of minimizing L;
over z for fixed § and o with the termination ecriterion (A2). In
contrast to the earlier algorithm the same value of ep is used in all
iterations. Due to the rapid convergence of the unconstrained
minimization algorithm this should make little difference in the
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number of function evaluations. The components of o are specified
initially and then adjusted by the algorithm so that in two suc-
cessive iterations Kt < K® where

K A max | min (¢;8) |- (A6)

i

The outer iterations are terminated when K is less than a specified
number (akmin),

APPENDIX B

NUMERICAL DATA

The following cases have been treated where, because of symme-
try, only »; < 1 have been considered for the fixed length case. The
parameters ° ep, epl, ¢% and akmin relate to the initialization of
the algorithms and the termination criteria. They are defined in
connection with the description of the algorithms in Appendix A.

Problem I: Three-section transformer, fixed lengths, I; = \o/4,
t=123;n=3.

Hestenes—Powell: M, = 1; {v:}:* = 0.50,0.77
Q0 =10, ep = 1072, epl = 0.5-1076.

VFO1A: M = 5; {n:}¢ = 0.50,0.60,0.70,0.77,0.90,1.00
{o%}:5 = 10 (initial values), akmin = 1074, ep = 107F,

Problem II: Three-section transformer, variable lengths; n = 6.

Hestenes—Powell: M. = 3, {»:};* = 0.50,0.77,1.23,1.50
(@2} = 10, ep = 1072, epl = 0.5-1075,

VFO01A: M = 10; {».}i* = 0.50,0.60,0.70,0.77,0.90,1.00,1.10,
1.23,1.30,1.40,1.50
{e 0}, = 10,100,101 akmin = 107,
ep = 1075,
Problem III: Five-section transformer, fixed lengths, I; = N\ /4,
i=1-5;m = 5.

Hestenes~Powell with Maximum Search:

M,=2
initial {v:}® = 0.500,0.625,0.875

final {vi}s® = 0.50000,0.61231,0.85971
(exact {v:}% = 0.50000,0.61229,0.85976)

@ = @ = 100, ep = 0.0156.

VFO1A: M = 25, {1} = 0.50,0.52,+++,1.00
{e2}:® = 10, akmin = 1074, ep = 1075
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Integrated TRAPATT Diode Arrays

A. ROSEN, H. KAWAMOTO, MEMBER, IEEE,
J. KLATSKIN, awp E. L. ALLEN, JR.

Abstract—This short paper is a description of the technique used
to monolithically interconnect TrapATT diodes in an array—resulting
in a diode having low inductance interconnection and integrated
heat capacitance which is necessary for long pulsewidths. For given
power dissipation density and pulse length, the transient temperature
rise in the diode decreases with the diameter. The reduction in
diode diameter, however, leads to reduced power output. To take
advantage of the reduction in temperature rise of small-size diodes
while maintaining a large power output, a multiple-diode structure,
monolithically interconnected, was fabricated.

Pulsewidth operation of 50 us has been achieved at a dissipation
power density as high as 200 kW /cm? whereas the dissipation
density must be reduced to 100 KW /cm? for the same total-area
single-disk diode to operate reliably at 50 us.

DIODE CONSIDERATIONS

The temperature rise of the TRAPATT diodes is a critical factor in
limiting the device performance because it can ultimately lead to
device failure. The dissipated energy per pulse, as well as the average
power dissipation, are among the highest values required of any
solid-state device. Therefore, it is necessary to give careful considera-
tion to the dynamic thermal conditions in the diodes, and to the
development of thermal design criteria that will lead to satisfactory
performance. .

The diodes in the array were interconnected both by utilizing
monolithically connected metallized bridges and by soldering
a piece of copper on top of the diodes. The additional copper mass
acts as a heat capacitor, temporarily absorbing heat transients and
thus extending the permissible operational pulsewidth. The diameter
of each diode is sufficiently small to provide thermal spreading during
the required pulse length, and, thus, the temperature rise during the
pulse is reduced. The spacing between the diodes is sufficiently
large to prevent thermal overlap between adjacent elements.

INTEGRATED DIODE ARRAY AND METALLIZED
AIR BRIDGE

The diode array is fabricated by applying a dot pattern mark on
a photoresist covered wafer, followed by a mesa etching. The process
results in an array of diodes on a single integrated heat sink. This
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integrated heat sink (having diode arrays) is mounted on a micro-
strip line package, and then a gold-plated copper disk is soldered
on the diodes’ tops for interconnection. Later, a metallized air
bridging technique [1], [2] is used to interconnect the “‘individual
diode’’ mesas. The metallized air bridge provides, in addition to low
inductance interconnection, an integrated heat capacilance which is
necessary for long pulsewidth (50-100 us) applications, such as in
pulsed amplifiers for phased-array radar systems.

The processing steps applied to TRAPATT arrays are similar to the
technique described by Basseches and Pfahnl [17] for interconnec-
tions on passive substrates. The major difference is that active
semiconductor silicon mesas of small sizes, rather than large metal
circuit patterns, are formed and interconnected. This semiconductor
material must be protected amidst the large contour topography
of the mesas, leading to a new process.

Detailed steps of this process are shown in Fig. 1 and are described
as follows. :

1) Batch process diodes using the standard mesa techniques.

2) Test all devices.

3) Apply positive photoresist, expose, and develop using a mask
of array dots that are slightly smaller than diodes. This step serves
two purposes: a) to prevent copper plating on top of the diode;
and b) to protect the diode junction while plating.

4) Copper plate between the diodes and between arrays to a
height slightly above mesa height.

5) Remove the photoresist above each diode. .

6) Reapply the photoresist, expose, and develop using a connec-
tion pattern mask.

7) Gold plate to a thickness of 2 mils,

8) Remove the photoresist.

9) Remove the copper.

10) Remove the photoresist around mesa body.
11) Test.

Scanning electron micrographs (SEM’s) of interconnected seven~
diode arrays are shown in Fig. 2, and their 7-V characteristics are
shown in Fig. 3. The interconnection of the arrays was checked by
comparing the junection capacity of the array with the junction
capacity of single diodes within the array.

DIODE PERFORMANCE

The multiple diodes have been tested in S-band TraPATT amplifier
circuits. The results of the tests are summarized in Table I.

Seven-diode arrays made from a p-type wafer operated at an
efficiency of 26.5 percent, 70-W output power, and 5.5-dB gain at
8 band in a coupled-bar circuit [4]. The 85-W oulput power at
50-ps pulsewidth has been achieved with a 19-diode array made
from a double-diffused wafer [57in a stagger-tuned microstrip line
amplifier circuit [6]. The dissipation power density of the ordinary
digk diode has to be controlled to be less than 100 kW /cm? to
operate at 50-us pulsewidth, but the array diode could dissipate at
as high as 200 kW/cm? while operating at 50-us pulsewidth. This
indicates that the array structure is superior to the ordinary disk
gtrueture in power-handling capabilities.

Two 19-diode arrays made from a p-type wafer were mounted
in series on a microstrip line package. Array diodes in series were
operated in a stagger-tuned microstrip line circuit and demonstrated
a 360-MHz bandwidth with an output power of 130 W (Fig. 4).
This result has been obtained by an input level profiling technique
in which the input RF power is adjusted as the frequency is varied
to give a detected output waveform with no observable noise. The
maximum gain was 6.5 dB and the maximum efficiency was 14.2
percent.

CONCLUSIONS

TRAPATT devices show great potential in the area of pulsed ampli-
fiers for phased-array radar systems.

To achieve simultaneous high peak powers at high-duty cycle
and long pulsewidth, special attention must be paid to the design



