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Minimax Optimization by Algorithms

Employing Modiiied Lagrangians

oLov tiiNARSSON

Absfracf—Two general, modified Langrangian algorithms
related to recent developments in nonlinear progr-%uning are pre-

sented. The methods give accurate results and are easy to program.

An N-section transmission-line transformer is used as a test

problem for minimax (equal ripple) optimization and the methods

are compared to existing algorithms for network optimization.

I. INTRODUCTION

There exists a large class of optimization problems of engineering

interest where some finite-dimensional functional is minimized (or

maximized) subject to an equal ripple condition. The purpose of

this short paper is to draw attention to the existence of two effec-

tive, recent algorithms which can be applied with advantage to this

type of problem. While not new, the methods do not appear to have

been applied to microwave problems before. The methods proposed

are quite general and the choice of a transmission-line transformer

problem as an example is only dictated by its use as a test problem

in previous works on minimax optimization [1 ]–[3].

Consider the following minimax problem. Find the vector z which

minimizes the real-valued function j(z); i.e., find

min.f(z) (1)
zelw

where f(x) is defined as

j(z) ~ max * \ p(z,v) [2 (2)
,61

and p is the reflection coefficient of the N-section lossless trans-

mission-line transformer shown in Fig. 1. In (2) the frequency u,

normalized to some suitable frequency PO, is varied either over a

closed interval

I = [Yl,lui] (3a)

or over a finite set

I = {vi]l~. (3b)

The components of the n-dimensional vector z in (1) are the (real)

characteristic impedances and the lengths of the transmission-line

sections. In one version the lengths of the sections are kept constant

and equal to hO/4 where ko = c/vO. The corresponding x vector is
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Fig. 1. 100-percent relative bandwidth 10:1 transmission-line

former.
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Alternatively, the lengthz of the transmission-line sections may also

be varied, resulting in an z vector

x = (.Z,,.Z2,- - ‘,zN,[,,i,, ” - .,t~), n = 2N. (4b)

The solution of the transmission-line transformer problem is known

in terms of Chebyshev polynomials. The optimal lengths all turn

out to be equal to ~0/4 and the optimal impedance can be deter-
mined from the polynomial expressing the insertion loss function

[4]. However, the methods of this investigation do not rely on this

special polynomial structure of the problem.

II. DISCUSSION OF METHODS

It is readly seen that the unconstrained minimization problem

given by (1), (2), and (3b) is equivalent to the following problem:

subject to the M — 1 nonlinear constraints

f,(z) –f,(z) <o, i = 2,3,. . .,M (6)

where we have defined

f.(x) Q * I P(%vi) 1’ (7)

and where we have used the fact that [ p (x, v) I takes its maximum

value at the left end point YI of the frequency range.

One well-established way of handling a nonlinear constrained

optimization problem is to introduce a Lagrange multiplier for each

constraint and construct a Lagrangian which will be stationary at

the solution point. However, in the treatment of nonconvex prob-

lems, the usefulness of the Lagrangian is limited by the fact that a

stationary point may not necessarily correspond to a minimum.

Hestenes [53 and Powell [6] independently discovered that this

drawback could be overcome by augmenting the Lagrangian with a

quadratic penalty function term making the problem locally convex

in a neighborhood of the solution point. A large number of cliff erent

. modified Lagrangians (also called “exact penalty functions” or

“augmented Lagrangians” ) have been proposed both for problems

with equality and inequality constraints [7], [8]. The modiiied

Lagrangianz employed in this short paper are given explicitly by

(Al) and (A4) of Appendm A.

In most cases the Lagrange multipliers related to an optimization

problem are unknown and have to be calculated during the mini-

mization procedure. One way of doing this is to employ the saddle-

point property of the modhkxi Lagrangian L (z,p) in the product

space [Z,M] where p is the multiplier vector, and solve the dual

problem, i.e., to find

max min L (z)p) (8)
pdw .dw

by iterating alternately in x and P space. The updating of the
multipliers can be done in dMerent ways. A very simple rule is used
h the Hestenas-Powell method. For the routine VI?OIA [9] advan-

tage is taken of the fact that if the unconstrained minimizations are
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performed by a quasi-Newton algorithm, the approximation obtained

to the second derivatives in x space can be utilized to approximate

the corresponding derivatives in P space, giving rapid (almost

quadratic) convergence in both spaces.

III. NUMERICAL RESULTS

We have performed computations on the problem under considera-

tion using two approaches: 1) an algorithm of the Hestenm–Powell

type; 2) a Fortran routine VFOIA developed by R. Fletcher at The

Atomic Energy Research Establishment, Harwell, England [9], and

available in the Harwell Subroutine Library. This routine employs

a modified Lagrangian proposed by Rockafellar [8]. In both cases

the unconstrained minimizations are performed by the Harwell

subroutine VA09A which is a quaei-Newton algorithm employing

the Broyden–Shanno-Fletcher formula to update an approximation

to the Hessian, factorized in triangular form [10], [11].

The Hestenes-Powell algorithm requires that the constraints be

given as equalities. If inequality constraints are present, this means

that the “set of active constraints,” i.e., the constraints satisfied

as equalities at the solution point x*, has to be determined. For

minimax problems of the type we consider, information about the

active set is usually available in advance and it is feasible to start

with an approximation of the active set and adjust this set, if

necessary, during the optimization procedure. We denote the active

set of frequencies by

1. Q {w, z = 2,3,. -., M Ift(z”) –f*(x*) = o]. (9)

Aesuming there are M. constraints belonging to I. we can, without

loss of generality, arrange them so that

839

1. = {Vi ]2””+1. (lo)

Of course the formulation (3a) where the frequency is varied over

a continuous interval is an optimization problem in an infinite-

dimensional space and to apply finite-dimensional methods some

approximations have to be made. The most obvious one is simply

to sample the interval at a finite number of points. However,”it should

be remembered that the result obtained will be only au approxima-

tion of the continuous problem related to (3a).

Increasing the accuracy of the locations of the maxima by makhg

the sampling interval smaller has the drawback of rapidly increasing

the number of constraints which are almost active, with computw

tional difficulties as a result. For that reason, for the five-section

transformer a modification of the Hestenes–Powell algorithm waR

used where a simple quadratic interpolation search procedure for

the vi wae employed after every second outer iteration (i.e., change

of /J).

All computations were performed on a Univac 1108 computer at

the Computation Center of the University of Lund. A ‘brief descrip-

tion of the algorithms can be found in Appendm A and the details

of the cases treated are given in Appendix B.

In Table I the numerical results are collected and compared to

the work by Bandler et at. [2] and by Charalambous and Bandler

[3]. Their approach to the problem differs somewhat from ours. For

example, the endpoint of the frequency range is not automatically

included in the active set. For full details the reader is referred to

the original papers. Note that one function evaluation means one

evaluation of the function and its gratilent.

When evaluating the reeults of Table I it should be borne in mind

that the larger part of the number of function evaluations often is

attributed to the first unconstrained minimization and consequently

TABLE I

NUMBER OF FUNCTION EVALUATIONS AND COMPUTER CPU TIME

,—
Wawuter

Pmblen Stsrtul g Point Algorithn Nmber of Function Evslustiom ~,:~

(elxonds),—

Hestenes+umll 26+10+6=42 0.71
,—

1

N=3 1, 3.1623, 10
331=+ 9 + 5 =47

V!?03A 1.09
1 = so/4 2.1-2 b 1.5-3 3.5-6

,—

Sand.kK et al. [71 219

II

N=3

vsriable
lengths

1, 3.1623, 10,
Hestenes-Rwell 40+17+10+4=71 1.84

0.8, 1.2, 0.8
,—

631 +10+6+5=84
VF03A 4.38

1.6-2 1.1-3 1.6-4 1.6-6

1.5, 3, 6, 0.8, 1.2, 0.S
VF03A

39\ +7+4=50
2.76

3.2-3 1.2-4 7.4-6

chsrskmtmus sod SSMIer [91 105, 95C

1, 3.1623, 10, 1, 1, 1
VF03.A

701+7+4=81
4.14

3.2-3 2. s-4 2.4-6

Charahmlmns al’d saldler [91 165, 155

III Sestenss+mell
(23+30)d + (6+5) + (3+3) + 1.72
+ (6+4) + (5+3) = 88

N=5 1.5, 3.5, 5.5, 7.5, 9.5 + ,—

1 = Ao/4 53 + 5s + 221 + 14=147
vFolA 16.56

4.3-3 5.4-4 2.1-4 2.4-5

Note: Starting points are given according to (4a) or (4b) with the lengths normalized to xO/4.
“ Correct active set established.
b Gives values of K with notation 2.1–2 Q 2.1. 10–Z.
c Average number of function evaluations for Algorithm 1 and 2, respectively.
d Search for maxima performed.
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is strongly dependent on the choice of starting point. The terminw

tion criteria chosen yield arelative error of the reflection coefficient

for the three+ection transformer ranging between 0.8.10-’ and 0.5.

10_’. The essentially quadratic convergence of the methods makea

an increase of this accuracy possible with little extra computational

effort.

IV. CONCLUDING REMARKS

Based on the limited numerical results presented, it seems reason-

able to conclude that minimex optimization can be effectively

achieved through algorithms employing a modified Lagrangian, and

that the efficiency of this approach is at least comparable to that of

available algorithms specifically designed for minimax optimization.

The results obtained indicate that is is better to use a search

procedure to locate the maxima and treat them as equality con-

straints than to create a large number of inequality constraints by

a fine subdivision of the frequency interval.

The methods presented are quite general and can be applied to

most optimization problems where equal ripples in some design

quantity are desired. The modified Lagrangians employed are well-

behaved functions resulting in rapid convergence of the minimiza-

tions required and makhg an increase of the desired accuracy of

little cast in computational effort. They are insensitive to the values

of the algorithmic parameters as long as the penalty factors are

chosen large enough to ensure local convexity around the solution

point. Furthermore, the Hestenes-Powell method is especially easy

to program by incorporating any available unconstrained minimiza-

tion routine into the program.

APPENDIX A

DESCRIPTION OF ALGORITHMS

Define the modified Lagrangian

M.?+l M.-N

L(Z,P,Q) A.fl + Z w(.fi –.fI) + ~ Qi(.fi –.fI)z (Al)
~=~ <=2

where #J 6 R~a are the multiplier vector and the weight factor

vector for the penalty function terms. With this notation the

Hestenes-Powell-type algorithm used is as follows.

Initially set x = X“, p = O, Q = QO,ep = ep”, then do the following.

1) Find miu L (Z,W,Q). Assume x = x* is this minimum with the

final step towards the minimum

I W“ – z,* I s ep, ; = l). ..,n. (M)

2) Set ~J* = At -F 2Qi[fi(z*) – fI (z*) ], i = 2,3,.0 .,M. + 1 and
ep* = 0.05ep.

3) Finish if Iji(z”) – ~,(z’) I < epl, i = 2,3, -. .,Ma + 1. If

~~(z*) – ~l(z*) > +($;(z) – $1(z)) set Q,’ = 10Q+ i = 2,3,...,
Ma + 1.

4) Set z = z*, ~ = ~“, Q = Q*, ep = ep”, go to 1).

The Harwell subroutine VFOIA [20] solves the problem

min {F(x) I c;(z) >0, i = 1,2, s..,M)
.&*

employing the modified Lagrangian

Ll(z,e,u) Q F(z) + + f ui{[(ci(z) – ei)_]~ – (9.2]
~=~

where 0, u E R~, and the notation

{

a ifa<O
~_ =

o ifa>O

(A3)

(A4)

(A5)

is used. One outer iteration (in e space) consists of minimizing LI

over z for iixed @ and u with the termination criterion (A2). In

contrast to the earlier algorithm the same value of ep is used in all

iterations. Due to the rapid convergence of the unconstrained

minimization algorithm thk should make little difference in the

number of function evaluations. The components of u are specified

initially and then adjusted by the algorithm so that in two suc-

cessive iterations FW+o < I@) where

The outer iterations are terminated when K is less than a specified

number (akrnin),

APPENDIX B

NUMERICAL DATA

The following casee have been treated where, because of symrn~

try, only n <1 have been considered for the fixed length csse. The

parameters QO, ep, epl, co, and alcmin relate to the initialization of

the algorithms and the termination criteria. They are defined in

connection with the description of the algorithms in Appendix A.

Problem I: Three-section transformer, fixed lengths, li = kO/4,

t = l,2,3; n = 3.

Hes-Powell: Ma = 1; {., },’ = 0.50,0.77

QJ = 10, ep = 10-2, epl = 0.5. 10+.

VFOIA: M = 5; {n },’ = 0.50,0.60,0.70,0.77,0 .90,1.00

{a” ),6 = 10 (initial values), akmin = 10-4, ep = 10-5.

Problem II: Three-section transformer, variable lengths; n = 6.

He.ste-nge-Pawell: M= = 3, (vi )14 = 0.50,0.77,1.23,1.50

{QiO}I’ = 10, ep = 10-2, epl = 0.5. 10~.

VFOIA: M = 10; {v,),” = 0.50,0.60,0 .70,0.77,0.90,1.00,1.10,

1.23,1.30,1.40,1.50

{ a,o }110 = 10,100,10,1 akmin = 10-4,

ep= 10–5.

Probkm 111: Flv-section transformer, fixed lengths, t~ = x/4,
i=l, . . ..5. n=5.

Hestenee-Powell w“th Maximum Search:

Ma=2

initial {w},’ = 0.500,0.625,0.875

final (v,},’ = 0.50000,0.61231,0.85971

(exact {P,),’ = 0.50000,0.61229,0.85976)

QZO= Q,” = 100, ep = 0.0156.

VFOIA: M = 25, {Pj}lze = 0.50,0.52,...,1.00

{ai”)l% = 10, akmin = 10-4, ep = 10-’.
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Integrated TRAPATT Diode Arrays

A. ROSEN, H. KAWAMOTO, MEMBER, IEEE,

J. KLATSKIN, AND E. L. ALLEN, JR.

Absfracf—This short paper is a description of the techrdque used

to monolithically interconnect TRAPATT diodes in an array-resnfting

in a diode having low inductance interconnection and integrated

heat capacitance which is necessary for long pulsewidths. For given

power dissipation density and pulse length, the transient temperature

rise in the diode decreases with the diameter. The reduction in

diode diameter, however, leads to reduced power output. To take

advantage of the reduction in temperature rise of small-size diodes

while meint”iaining a large power output, a multiple-diode structure,

monolithically interconnected, was fabricated.

Pufsewidth operation of 50 PS has been achieved at a dissipation

power density as high as 200 kW/cm2, whereas the dissipation

density must be reduced to 100 kW/cm2 for the same total-area

single-disk diode to operate reliably at 50 Ps.

DIODE CONSIDERATIONS

The temperature rise of the TRAPATT diodes is a critical factor in

limiting the device performance because it can ultimately lead to

device failure. The dissipated energy per pulse, as well as the average

power dissipation, are among the highest values required of any

solid-stat,e device. Therefore, it is necessary to give careful considera-

tion to the dynamic thermal conditions in the diodes, and to the

development of thermal design criteria that will lead to satisfactory

performance.

The diodes in the array were interconnected both by utilizing

monolithically connected metallized bridges and by soldering

a piece of copper on top of the diodes. The additional copper mass

acts as a heat capacitor, temporarily absorbing heat transients and

thus extending the permissible operational pulsewidth. The diameter

of each diode is sufficiently small to provide thermal spreading during

the required pulse length, and, thus, the temperature rise during the

pulse is reduced. The spacing between the diodes is sufficiently

large to prevent thermal overlap between adjacent elements.

INTEGRATED DIODE ARRAY AND METALLIZED

AIR BRIDGE

The diode array is fabricated by applying a dot pattern mark on

a photoresist covered wafer, followed by a mesa etching. The process

results in an array of diodes on a single integrated heat sink. This

Manuscript received October 4, 1975; revised April 11, 1975. Thw work

was supported in part by the U. S. Army Electronics Command under

Contract DAAB07–74–C’+31 S0.

The authors are with David Sarnoff Research Center. RCA Labora-
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integrated heat sink (having diode arrays) is mounted on a micro-

strip line package, and then a gold-plated copper dkk is soldered

on the diodes’ tops for interconnection. Later, a metallized air

bridging technique [1], [2] is used to interconnect the “individual

diode” mesas. The metallized air bridge provides, in addition to low

inductance interconnection, an integrated heat capacitance which is

necessary for long pulsewidth (5O–lOO M) applications, such as in

pulsed amplifiers for phased-array radar systems.

The processing steps applied to TRAPATT arrays are S~llar to the

technique described by Bameches and Pfahnl [1] for interconnec-

tions on passive substrates. The major difference is that active

semiconductor silicon mesas of small sizes, rather than large metal

circuit patterns, are formed and interconnected. This ~;emiconductor

material must be protected amidst the large contour topography

of the mesas, leading to a new process.

Detailed steps of thk process are shown in Fig. 1 ancl are described

as follows.

1) Batch process diodes using the standard mesa techniques.

2) Test all devices.

3) Apply positive photoresist, expose, and develop using a mask

of array dots that are slightly smaller than diodes. This step serves

two purposes: a) to prevent copper plating on top of the diode;

and b) to protect the diode junction while plating.

4) Copper plate between the diodes and between arrays to a

height slightly above mesa height.

5) Remove the photoresist above each &lode.

6) Reapply the photoresist, expose, and develop using a connec-

tion pattern mask.

7) Gold plate to a thickness of 2 roils,

8) Remove the photoresist.

9) Remove the copper.

10) Remove the photoresist around mesa body.

11) Test.

Scanning electron micrographs (SEM’S) of interconnected seven-

diode arrays are shown in Fig. 2, and their I-V characteristics are

shown in Fig. 3. The interconnection of the arrays WIN checked by

comparing the junction capacity of the array with the junction

capacity of single diodes within the array.

DIODE PERFORMANCE

The multiple &lodes have been tested in S-band TRA PATT amplifier

circuits. The results of the tests are summarized in T:able I.

Seven-diode arrays made from a p-type wafer operated at an

efficiency of 26.5 percent, 70-W output power, and 5.5-dB gain at

S band in a coupled-bar circuit [4]. The 85-W oul,put power at

50-ps pulsewidth has been achieved with a 19-diode array made

from a double-diffused wafer [5] in a stagger-tuned microstrip line

amplifier circuit [6]. The dissipation power density of the ordinary

disk diode has to be controlled to be less than 1C1OkW/cm’ to

operate at 50-Ps pulsewidth, but the array diode cou Id dissipate at

as high as 200 kW/cmz while operating at 50-w3 pu kewidth. Thk

indicates that the array structure is superior to the ordinary disk

structure in power-handling capabilities.

Two 19-diode arrays made from a p-type wafer were mounted

in series on a microstrip line package. Array &lodes in series were

operated in a stagger-tuned &icrostrip line circuit and demonstrated

a 360-MHz bandwidth with an output power of 13(1) W (Fig. 4).

This result has been obtained by an input level profiling technique

in which the input RF power is adjusted as the freqtl ency is varied

to give a detected output waveform with no observable noise. The

maximum gain was 6.5 dB and the maximum efficiency was 14.2

percent.

CONCLUSIONS

TRAPATT devices show great potential in the area of pulsed ampli-

fiers for phased-array radar systems.

To achieve simultaneous high peak powers at high-duty cycle

and long pulsewidth, special attention must be paid to the design


